——~

Richard A. Jacobsen (RJ5136)

ORRICK, HERRINGTON & SUTCLIFFE LLP
51 West 52nd Street

New York, New York 10019

Telephone: (212) 506-5000

Facsimile: (212) 506-5151

Gabriel M. Ramsey

(pro hac vice application pendzn )

ORRICK, HERRINGTON & SUTCLIFFE LLP
1000 Marsh Road

Menlo Park, California 94025

Telephone: (650) 614-7400

Facsimile: (650) 614-7401

Attorneys for Plaintiffs
MICROSOFT CORPORATION, ,
FS-ISAC, INC. and NATIONAL AUTOMATED

CLEARING HOUSE ASSOCIATION

UNITED STATES DISTRICT COURT
EASTERN DISTRICT OF NEW YORK

MICROSOFT CORP., FS-ISAC, INC,, and ™ *
NATIONAL AUTOMATED CLEARING HOUSE | (~,c0 No.

ASSOCIATION,

14379
03714

£

13

2=17

FILED UNDER SEAL

Plaintiffs
V.

JOHN DOES 1-39 D/B/A Slavik, Monstr, IOO,
Null, nvidiag, zebra7753, lexa Mef, gss, icelX,
Harderman, Gribodemon, Aqua, aquaSecond, it,
percent, cp01, hct, xman, Pepsi, miami, miamibc,
petrOvich, Mr. ICQ, Tank, tankist, Kusunagi,
Noname, Lucky, Bashorg, Indep, Mask, Enx,
Benny, Bentley, Denis Lubimov, MaDaGaSka,
Vkontake, rfcid, parik, reronic, Daniel, bx1, Daniel
Hamza, Danielbx1, jah, Jonni, jtk, Veggi Roma, D
frank, duo, Admin2010, h4x0rdz, Donsft,
mary.J555, susanneon, kainehabe, virus_e 2003,
spaishp, sere.bro, muddem, mechanlzm,
vlad.dimitrov, jheto2002, sector.exploits AND
JabberZeus Crew CONTROLLING COMPUTER
BOTNETS THEREBY INJURING PLAINTIFES,
AND THEIR CUSTOMERS AND MEMBERS,

Defendants.

DECLARATION OF JESSE D. KORNBLUM IN SUPPORT OF PLAINTIFFS’
APPLICATION FOR AN EMERGENCY TEMPORARY RESTRAINING ORDER,
SEIZURE ORDER AND ORDER TO SHOW CAUSE RE PRELIMINARY INJUNCTION




|, Jesse D. Kornblum, declare as follows:

1. | am a Computer Forensics Researcher with Kyrus Technology. | make this
declaration in support of Plaintiffs’ Application For An Emergency Temporary Restraining
Order, Seizure Order And Order To Show Cause Re Preliminary Injunction. | make this
declaration of my own personal knowledge and, if called as awitness, | could and would testify
competently to the truth of the matters herein.

2. | have over years of twelve years of experience in the field of computer and
information security. | began my career as a Computer Crime Investigator with the U.S. Air
Force Office of Specia Investigations. Subsequently, | became Chief of Research and
Development and ultimately Chief of the Computer Crime Investigations Division of the Air
Force Office of Specia Investigations. | have had roles as an instructor of computer science at
the U.S. Naval Academy and Lead Information Technology Specialist with the U.S. Department
of Justice, Computer Crimes and Intellectual Property Section. Most recently, | have had
forensic research rolesin the private sector. Currently, | am employed by Kyrus Technology, a
technology company focused on reverse engineering, vulnerability research, computer forensics,
and specialized software devel opment related to computer security matters. A true and correct
copy of my curriculum vitaeis attached as Exhibit A to this declaration.

3. We were asked to conduct the underlying analysis to determine the similarity
between copies of the Zeus Trojan botnet source code (“Zeus’) and myriad binaries distributed
by malicious actors. A “Trojan” program is amalicious program disguised as a legitimate
application that is typically used to introduce viruses onto a computer or network. Our analysis
is broken down into three main phases and is attached hereto as Exhibit B.

4, The first phase included an analysis of five portable executable binaries (“ PE
binaries”) to determine a connection between these PE binaries and Zeus. A portable executable
binary is afile which contains code and resources for executing on a computer running the
Microsoft Windows operating system.

5. The second phase involved the analysis of three sets of binaries related to the



SpyEye, ICE-IX, and PCRE (aka“Zeus’) Trojans. These programs are recognized in the
industry as being associated with “malware,” otherwise known as malicious software designed to
disrupt or damage a computer, computer system, or network, or to gain sensitive information, or
unauthorized access to computer systems.

6. In the third and final phase, we analyzed email messages sent by malicious actors
that purported to be from the National Automated Clearing House Association, the trade
organization for the ACH (direct deposit) system, to determine the functionality of links
contained in the body of the emails. These three phases are described in more detail below.

7. Based on our analysis, we have concluded the following:

a. Itishighly probable that the PE binaries are copies of Zeus.

b. Theanalyzed binaries related to SpyEye and ICE-IX are each highly similar to
Zeus and support afinding that Zeus was developed with malicious intent.

c. Theemail messages purportedly sent from the National Clearing House
Association were designed to drive recipients to websites which would infect

them with malware.

ANALYSIS
A. Phase |
8. We were provided 70 binary files, five of which were PE binaries. Of thesefive,

four were packed using various means. A “packed” binary refers to an executable computer
program which has been compressed and/or obfuscated. When executed, such programs use
functionality added during the packing to return themselves to afunctional equivalent of their
original form.

0. The four packed binaries were unpacked to determine the functionality of their
executable code. Ex. B at 5. Executable codeis the set of sequential instructions executed by a
computer and are generated from a programmer’ s source code. The source code isthe
“blueprints’ of the software, dictating what the program will do and how it will doit. The
unpacked binary—2cc1076f3c6e65d0a59792b75370b04613258ffa—was used as a baseline for



functionality because no modifications to the binary were needed. 1d. Every other packed
executable was then compared against this baseline. Below are the PE binaries analyzed in

Phase I:

2cc1076f3c6e65d0a59792b75370b04613258ffa (baseline)
0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2¢ (packed version 1)
9h259bc255fef 873f 1e41629fb67¢30f0c40e5dc (packed version 2)
1bfdcaf2cfad8alf063d1826992fbaf 562924394 (packed version 3)
bfcc02219321d1047cc0330454a61f6b276d06f6 (packed version 4)

10.  Weapplied anumber of analytic toolsto the five PE binaries to determine the

commonality between them and Zeus, using the unpacked PE binary as a baseline.

11. First, we conducted an analysis of each binary using “Virus Total.” VirusTotd is
a service that applies anumber of Anti-Virus products to analyze suspicious filesand URLs and
detects the presence of malware, including Trojans. Thisanaysisreveaed a significant number
of the Anti-Virus products applied by Virus Total identified these PE binaries as malicious.
Indeed, for amost all of the PE binaries, amajority of the Anti-Virus products determined that
the binary was malicious. See Ex. B at 6, 8, 10, 12 and 13. These findings are consistent with
our conclusion that these binaries contain malicious software.

12. Next, we conducted an “Entry Point Analysis’ to determine whether we had
successfully unpacked a binary and to determine whether two binaries came from the same
source code base. The “entry point” isthe address of the first instruction to be executed in a
binary. Because of the nature of the computer architecture, the first instruction is not necessarily
at the beginning of the file. Here we compared the entry point code of the baseline PE binary to
each of the four packed PE binary files. SeeEx. B at 6-7, 9, 11, 13, and 14. Inthis case, the
functionality of the entry point code was to disable any error message that may pop up during
execution, and to attempt to get any command line arguments. See Ex. B at 7. Our comparisons
determined that al five PE binaries are compiled from the same source base. Ex. B a 6-7, 9, 11,
13, and 14.

13. For the next analysis, we applied a Zynamics BinDiff program to the PE binaries.

Zynamics BinDiff is a comparison tool that detects the similarities and differences between



binary files. We applied Zynamics BinDiff to compare the four unpacked PE binaries
executable code to that of the baseline. Ex. B at 9, 11, 13, and 15. An “executablefile”
determines the functionality of the binary. For all but one of the four packed PE binaries, our
analysis determined that there was a significant overlap between each packed PE binary and the
baseline binary. 1d. For one unpacked PE binary, however, the Zynamics BinDiff program was
unable to make a proper comparison against the baseline. 1d. at 13. The significant similarities
between the functions of the PE binaries (with the exception of one PE binary) indicate that the
PE binaries have been compiled from the same source code.

14.  Our entry point and Zynamics BinDiff analyses establish that all five PE binaries
were compiled from the same code base. Id. at 15.

15.  After determining that al five PE binaries were compiled from the same code, we
compared the PE binary to that of Zeusto determine their similarities. We were ableto obtain
publicly available copies of the Zeus source code and compiled our own copy of Zeusto
compare to each of the PE binary files described above. Ex. B at 15. Using Zymanics BinDiff,
we ran a comparison of the executable baseline PE binary, with that of our compiled Zeus source
code. Id. at 16. The comparison showed the baseline and our compiled versions are identical.
Id. In other words, we determined that our samples are compiled versions of Zeus. |d.

16. Following this comparison, we searched for functions within our copy of Zeus
that had avery low probability of being duplicated or copied by accident. We were ableto
determine that in every case, there was an exact or extremely high match between our copy of
Zeus and the PE binaries that we analyzed. Id.

17.  Weaso compared the PE binaries with our compiled version of Zeus using a
program called The Interactive Disassembler (“IDA”) to find and extract control flow graphs
from both the binaries and Zeus. Id. at 17. Programs, like Zeus and binaries, are defined by a
sequence of statements. Id. at 16. Each statement is an instruction to perform a discrete
operation. These statements are linked together into agraph. Id. At every point whereavaueis

tested, a statement can conditionally branch to a new node in the graph depending on the value.



Id. Inthisway, any logical instructions can be represented by computer code. Id. By using
IDA, we were able to compare each of the PE binaries to the Zeus binary we compiled in graph
form. See Ex. B at 16-22. These graphs are ailmost identical across each program. Id. at 21. We
were also able to extract the specific functions within each program to compare to the other
binaries. 1d. at 24. Our results indicate that for the functionsidentified in the binaries, almost all
of them are structurally identical to functions that are within Zeus. 1d.

18.  Thesimilarities between Zeus and the PE binaries also show that it is highly
likely that Microsoft compilers were used to build these versions of Zeus. A “Microsoft
compiler” isatool used to convert source code written by a programmer into a Window-based
PE executable. When comparing the source code in Zeus to each PE binary, we were able to
identify identical blocks of source code for identical functionsin each. Ex. B at 22-23. Thisis
significant given the fact that different compilers write different code to carry out the same
function. Id. at 23-24. It ishighly probable, then, that Zeus and the PE binaries were both
developed using Microsoft compilers, providing additional support for our conclusion that the
PE binaries are copies of Zeus.

19. Finally, we used the industry standard “fuzzy” hashing technique to compare the
PE unpacked binaries and Zeus. Id. at 24-25. This technique alows for the comparison of files
after converting the code into individual hashes, making it easily readable. We used this
technique to compare files found in both the unpacked binaries and Zeus. Id. The fileswere
found to be similar—with large stretches of identical patterns of bytes, consistent with our
conclusion that these files are essentially the same. Id.

B.  Phasell

20. For the second phase, we analyzed three sets of binaries and compared the
capabilities of asample from all three to the Zeus source code. These sets of binaries, which are
regarded as malicious software in the industry, include: 1) PCRE, 2) SPYEYE, and ICE-IX.

21.  Wewere unable to analyze the PCRE binary because this sample did not contain

valid applications to analyze and were likely encoded with a password that was not provided.



Ex. B a 26.

22. Weanalyzed the SPYEY E sample set by reverse engineering a selected file,
b33064449295083dbfec12634523d805. Id. After reverse engineering thisfile, we were ableto
determine that the capabilities of this binary are: 1) windows enumeration, 2) take screenshot of
desktop, 3) retrieve clipboard data, 4) keyboard logging, 5) retrieve system information, 6)
communicate with C& C server using HTTP, 7) enumerate user accounts, 8) file search, 9)
remote process code injection, 10) manipul ate windows registry, 11) process enumeration, 12)
read arbitrary file contents, 13) standard TCP socket communication, and 14) download and
execute payloads. 1d.

23.  Wenext analyzed the ICE-1X sample using thefile
3c6839c4ce744c9c0ddf2bad6963c3f4. 1d. After reverse engineering the binary we determined
that its capabilities included: 1) take screenshot of desktop, 2) remote process code injection, 3)
retrieve system information, 4) user account enumeration, 4) keyboard logging, 5) process
enumeration, 6) file search capability, 7) get contents of arbitrary file, 8) encrypt/decrypt data
using the Windows crypto API, 9) manipulate windows registry, 10) communicate with C&C via
HTTP; 11) Standard TCP socket communication, and 12) download and execute payloads. 1d. at
27.

24.  Wethen compared the Zeus binaries and to SPYEY E and ICE-IX and determined
that the functionality is very similar. Specifically, Zeus supports the following capabilities: 1)
take screenshot of desktop, 2) remote process code injection, 3) retrieve system information, 4)
keyboard logging, 5) VNC server, 6) HTTP injection, 7) communicate with C&C viaHTTP; 8)
download and execute payloads, 9) process enumeration, 10) self delete using bat file, 11)
intercept Windows API functions, and 12) manipulate Windows Registry. Thisfinding of
similar capabilities supports our conclusion that the Zeus binaries were developed with malicious
intent.

C. Phasell|

25. In the final phase of our analysis, we examined e-mails purportedly sent by the



National Automated Clearing House Association (“NACHA™), but actually originating from
malware authors. The subject and content of these emails contain references to ACH (direct
deposit) payments being rejected. These emails directed the recipient to a URL that the e-mail
states is a Microsoft Word document providing more information. In actuality, however, we
found these URLSs pointed to a website that hosts malicious software.

26. We analyzed the content hosted at the URL provided in these emails using Virus
Total. The results of this analysis indicated both the content and domain were malicious. See
Ex. B at 27-29. These findings are consistent with our conclusion that these emails were

designed to drive recipients to infect themselves with malware.

I declare under penalty of perjury under the laws of the United States of America that

the foregoing is true and correct to the best of my knowledge.

Executed this 18™ day of March, 2012
o ol

Jesse D. Kornblum




EXHIBIT A



Jesse D. Kornblum

Kyrus Technology
Sterling, VA

Education
M. Eng., Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 1999

jesse.kornblum@kyrus-tech.com
http://jessekornblum. com/

B.S. Computer Science, Massachusetts Institute of Technology, 1999

Employment

Service

Kyrus Technology Corporation
Computer Forensics Research Guru

ManTech International Corporation
Senior Computer Forensic Scientist

United States Department of Justice

Lead Information Technology Specialist,
Computer Crime and Intellectual Property
Section

United States Naval Academy
Instructor, Computer Science Department

Air Force Office of Special Investigations
Chief, Computer Investigations and Operations

Air Force Office of Special Investigations
Chief of Research and Development, Computer
Investigations and Operations

Air Force Office of Special Investigations
Computer Crime Investigator

2010-Present
Sterling, VA

2005-2010
Falls Church, VA

2004-2005
Washington D.C.

2003-2004
Annapolis, MD

2003
Andrews AFB, MD

2001-2003
Andrews AFB, MD

1999-2001
Andrews AFB, MD

Member of the Editorial Board for the journal Digital Investigation
Technical Program Committee Member for Digital Forensic Research Workshop 2005-2010

Technical Editor for Windows Forensic Analysis by Harlan Carvey
Member of the DFRWS Common Digital Evidence Storage Format Working Group

Awards and Honors
USNA Computer Science Department “Top Geek”, Fall 2003

HQ AFOSI Company Grade Officer of the Quarter, 2nd Quarter 2002



Jesse D. Kornblum

Refereed Papers
J. Kornblum, Implementing BitLocker Drive Encryption for Forensic Analysis, Digital Investigation,
5(3): 75-84, March 2009.

J. Kornblum, Auditing Hash Sets: Lessons Learned from Jurassic Park, Digital Forensic Practice,
2(3):108-112, July 2008.

E. Libster and J. Kornblum, A Proposal for an Integrated Memory Acquisition Mechanism, Operating
Systems Review, 42(3):14-20, April 2008.

J. Kornblum, Using Every Part of the Buffalo in Windows Memory Analysis, Digital Investigation,
4(1):24-29, March 2007.

J. Kornblum, Ezxploiting the Rootkit Paradox with Windows Memory Analysis, International Journal
of Digital Evidence, 5(1), Fall 2006.

B. Carrier, E. Casey, S. Garfinkel, J. Kornblum, C. Hosmer, M. Rogers, and P. Turner, Standardizing
Digital Evidence Storage, Communications of the ACM, February, 2006.

J. Kornblum, The Linux Kernel and the Forensic Acquisition of Hard Disks with an Odd Number of
Sectors, International Journal of Digital Evidence, Volume 3(2), Fall 2004.

Conference Papers
J. Kornblum Using JPEG Quantization Tables to Identify Imagery Processed by Software, Digital
Investigation, 5(S):21-25, Proceedings of the Digital Forensic Workshop, August 2008.

J. Kornblum, Identifying Almost Identical Files Using Context Triggered Piecewise Hashing, Digital
Investigation, 3(S):91-97, Proceedings of the Digital Forensic Workshop, August 2006.

J. Kornblum, Preservation of Fragile Digital Evidence by First Responders, Digital Forensic Research
Workshop, Syracuse, NY, August 2002.

Other Publications
J. Kornblum, When I'm Sizty Four (Bits), ManTech Tech Note 2009-01, August 2009.

Forensic Tools
J. Kornblum findaes, Finds AES key schedules

J. Kornblum hashdeep, Audits a set of known hashes against a given directory, 2008.

J. Kornblum, Miss Identify, Identifies PE executables that do not have an executable extension.
Optionally identifies all executables in a set of input files, 2008.

J. Kornblum, dc3dd, a version of GNU dd patched for computer forensics, 2008.

J. Kornblum, ssdeep, Computes and matches context triggered piecewise hashes, also called fuzzy
hashing. Matches similar but not identical files, 2006.

J. Kornblum, md5deep, A set of recursive programs for computing MD5, SHA-1, SHA-256, Tiger,
and Whirlpool hashes. Capable of both positive and negative matching, 2002.



J. Kornblum, Investigator Controlled Evidence Extraction Engine (ICE®). Boot CD for
automated disk imaging.

J. Kornblum, First Responder’s Evidence Disk (FRED). Automated Windows incident response
tool.

K. Kendall, J. Kornblum, N. Mikus, foremost. A linux based file carving program. Recovers files
from disk images based on their headers and footers, 2001.



EXHIBIT B



b71 Binary Analysis Report

PROPRIETARY AND CONFIDENTIAL



PROPRIETARY AND CONFIDENTIAL

Table of Contents

EXECULIVE SUIMIMATY ..covuiiicirireeireseseseessssesssesesssesessssesssss s ssssssessssessssssessssssessssssesssssssasssesssssssssanes 4
PRASE L.t R AR 5
Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa......cccvurererererreererneererneeresnennns 5
Virus TOtal RESULLS ..ottt sessss s s s ssess s ssesees 6
ENETY POINE ANALYSIS cuiuriierieririresissisesiseisesssessess s ssessssesssssssesssssssesssssssesssssssessssssssssssssssssssssssans 6
Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62€9D2C ... uimreererereereererreerenenrennenn 7
Virus TOtal RESULLS ... sesssssesssssesssssesees 8
Entry Point Execution FIOW COMPATiSON ......comereereeneenesnessessessessessesssssessessessessesssssessesnes 9
BINDIff ANALYSIS cievvriireirrissirsinsinsissssssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnes 9
Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dC...unmrnnenmenereeneseensessesssneens 10
Virus TOtal RESULLS ...ttt s s s ettt sssnes 10
Entry Point Execution FIOW ANalySiS......cninnnnesinsnesesessesssessessssessssssessssssnenns 11
BINDIff ANALYSIS cooueieiereeeereeseeseiset e ss ettt s 11
Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 .........ooveenremeeneerreereessesseenens 12
VIruSTOtal RESUILS ...ttt s st 12
Entry Point Execution FIOW ANalySiS......cninenneinssnesissssesssessessssessessssessssssnenns 12
BINDIff ANALYSIS coouceiecereeeereeseeseiset et s ettt s 13
Binary: bfcc02219321d1047cc0330454a61f6b276d06f6........ovveereereeeeereereenreerennens 13
Virus TOtal RESULLS ...ttt s et s sttt sttt sssnes 13
Entry Point Execution FIOW ANalySis.....ccunnennenienenessensssesssssessssssesssssesssssssssssenss 14
BINDIff ANALYSIS covuvvrieeeriissiriissinsissinssssisssss s ssssssssssss st sssssssssssssssssssssssssssssssns 14
INITIA] CONMCIUSION .ottt 15
FOlIOW-UD QUESTIONS ...t esssesssssssesssssssssssssssssssssssssssssssssssssssssssssssssssssssssssnens 15
FUZZY HASIING .ottt 24

g 0Ty PP 26
PORE .ottt R 26
SPYEYE ottt 26
(00 D OO 26
/=3 D 27
000 Uod 103 o) o PP 27
E-TNAIL ANALYSIS 1o eeeseesese st es s bbbt 27
APPENAIX A oottt 30
APPENAIX B ettt 32

Page 2 of 42



PROPRIETARY AND CONFIDENTIAL

APPEINAIX Cereeeeereeeeseeee e e sese e s s e E e E s bbb e bbb 34
APPENAIX D e 36
APPENAIX Bttt 38
APPENAIX Foo e e 40

Page 3 of 42



PROPRIETARY AND CONFIDENTIAL

Executive Summary

Our analysis of over 70 binaries reveals a great deal of commonality between known
copies of the Zeus Trojan and myriad binaries being distributed by malicious actors.

Our effort was broken down into three main phases. In the first phase we analyzed
five PE binaries. Four of the five were packed using various means. We unpacked
them and subjected them to a variety of analysis techniques in an attempt to
connect them to the Zeus malware. In each case the results were highly probable
that the binaries were in fact copies of Zeus.

In the second phase we were provided with several hundred binaries that were
known or suspected to be related to the SpyEye, ICE-IX, and PCRE Trojans. Our
analysis revealed that of the binaries we were able to analyze, each were highly
similar to Zeus.

In the third and final phase we analyzed email messages sent by malicious actors
that purported to be from the National Automated Clearing House Association, the
trade organization for the ACH (direct deposit) system. These messages were
designed to drive recipients to infect themselves with malware.

Page 4 of 42



PROPRIETARY AND CONFIDENTIAL

Phase ]

We were provided 70 binaries, five of which were PE binaries. Of the five PE
binaries, four were packed using various means. Those 4 were unpacked and the
import tables were reconstructed for viewing in IDA Pro to determine the
functionality of the executable. The unpacked binary:

2cc1076f3c6e65d0a59792b75370b04613258ffa

was used as a baseline for functionality because no modifications to the binary were
needed. Every other packed executable was then compared against this baseline
executable. Below are the binaries we are addressing in this paper:

2cc1076f3c6e65d0a59792b75370b04613258ffa (baseline)
0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2¢ (packed version 1)
9b259bc255fef873f1e41629fb67c30f0c40e5dc (packed version 2)
1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 (packed version 3)
bfcc02219321d1047cc0330454a61f6b276d06f6 (packed version 4)

Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa

This binary was not packed and we did not modify it before analyzing it. We are
using it as our baseline for functional commonality. It contains the following
functionality:

e HTTP communication capability

e Remote Process Injection. Uses WriteProcessMemory to inject executable
code into a remote process. Generally this is either used by debuggers or
malware. Since this binary has no debugger functionality, we assume the
reason for its inclusion is malicious.

e Screenshot Capability. Allows this application to save and send back
screenshots to the server. This allows an attacker to see what exactly is

showing on the victim'’s screen.

e VNC-Type Server Functionality. Allows the attacker to control the mouse and
keyboard of the victim’s computer.

e Keyboard Logging Capabilities. Allows the attacker to send keystrokes to a
server to get victim’s passwords that are typed into the keyboard.

Page 5 of 42



PROPRIETARY AND CONFIDENTIAL

e Firefox Browser Logging. Hooks nspr4.dll to allow logging of all http and
https activity to a file. This file is downloaded from the attacker to view all
browsing activity.

e Windows mail download. Allows the attacker to view the victim’s email if the
user uses Windows Mail or Outlook Express.

e Self-Delete using a bat file.

Virus Total Results

Appendix A shows the results from Virus Total. When submitting the hash to virus
total it is identified by most AVs as Zbot. 33 out of 43 engines detected this binary
as malicious.

Entry Point Analysis

-text:0041A831 public start

-text:0041A831 start proc near

-text:8041A831

-text:8841A831 var_C = dword ptyr -8Ch

-text:8841A831 hDbject = dword ptr -8

-text:0041A831 pHumArgs = dword ptr -4

text:0041A831

-text:0041A831 push ebp

-text:9041A832 mou ebp, esp

-text:0041A83L4 sub esp, BCh

-text:0041A837 push ebhx

-text:8041A8B38 push a8

text:80841AB3A ®op bl, bl

-text:8041AB3C call sub_4199AE

text:a041A8H1 test al, al

-text:8041ABL3 jz loc_41ASFE

-text:0041ABYLD push 8887h ; ublode
-text: 084 1A8LE mou byte ptr [ebp+var C], bl
-text:0041A851 mou byte ptr [ebp+hDbject], 1
-text:8041ABSE call ds:SetErroriode
-text:0041A85B lea eax, [ebp+pHumArgs]
-text:8041ABSE push eax ; pHumArgs
-text:80M1ABSF call ds:GetCommandLineV

text: 004 1R8BGS push eax ; lpCmdLine
-text:0041ABGG call ds:CommandLineToArgul
text:0041A86C test eax, eax

-text:0041A8GE jz short loc_41ABDY
-text:8841A87A ®or edx, edx

-text:0041A872 cnp [ebp+pHumArgs], ed=
-text:A041ABTS jle short loc_41A8AB
-text:00M1ABTY

-text:00M1A8B77 loc_MABTY: ; CODE XREF: start+78lj
-text:0041ABTT mou ecx, [eax+edx=l]
text:0041AB7A test ecx, ecx

text:0041A87C jz short loc_41ABAS

Figure 1 (2cc1076f3c6e65d0a59792b75370b04613258ffa Entry Point)

Page 6 of 42



PROPRIETARY AND CONFIDENTIAL

Figure 1 shows our baseline executable entry point. These are one of the metrics we
used to determine if we had successfully unpacked a binary and to determine if two
binaries came from the same code base. The code in Figure 1 essential just disables
any error messages that may pop up during execution, and attempts to get any
command line arguments.

Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c

We unpacked this binary, and the others, using a manual combination of WinDbg,
IDA Pro, and Imprec.

The first stage decoder is at 43E000, looks like it is copied to a virtual alloc’d buffer,
in this case 0x9b0000. This buffer contains an MZ header and is stage2 of the
decoder. We continued until we find another MZ header in a virtual alloc’d buffer, in
this case we found that it does another iteration of decoding. Another virtual alloc’d
buffer was found at a00000:

0:000> dc a00000

00a00000 6c385348 4b32686e 4f6f5ad4e 50704364 HS81nh2KNZoOdCpP
00a00010 45705864 3271775a 7058616c 55547043 dXpEzZwg2laXpCpTu
00a00020 4c42674d 4549754c 6F68516F 6445069 MgBLLUlEoQhoiPDn
00a00030 3234754f 59342f5a 2b30326c 31465636 0u42Z/4Y120+6VF1
00a00040 376f656d 7344524d 58564362 55477330 meo7MRDsbCVX0sGU
00a00050 686F7538 76423147 746a6163 36433841 8uohGlBvcajtA8C6
00a00060 71506461 78396F4F 4e4b4863 2b4c776b adPgOo9xcHKNkwL +
00a00070 33756F4T 53726642 74587773 63735a6a Oou3BfrSswXtjZsc
Another virtual alloc’d buffer:

0:000> db 00a50000

00a50000 58 50 58 41 58 43 58 4b-00 32 02 00 cc 33 01 00
XPXAXCXK.2...3..

00a50010 00 26 96 8e 70 00 17 f7-ec 05 bb ea f4 ff 94 01

< o I

00a50020 2f 44 ef 7c e6 5 d8 e8-08 04 cb dl1 e8 7b d6 d9

0 PR o

00a50030 98 fO 63 6¢ dd Ob 4b 4e-b9 fc a4 17 Oc O 54 53
_.cl._KN...... TS

00a50040 3b bO ae 1c 70 86 OF 1b-ae a2 22 07 9b b7 67 57

R o PR Yo..gwW

00a50050 9a 97 04 02 e8 9b a9 7e-08 fc a7 7e 8a 9a 93 d3
00a50060 6F 46 7e 3b 8F 17 61 bl-62 4F 90 4F e8 48 8e 46
oF~;..a.b0O.0.H.F

00a50070 48 76 78 70 fe 35 75 0c-dO 7a 82 c3 3 17 9e eO

Hvxp.5u..z......

...and another...

Page 7 of 42



0:000> db 00al10000
00a10000 4d 5a 90

00a10040 Oe 1f ba
........ 1_._.L.ITh
00al0050 69 73 20
canno

00a10060 74 20 62
DOS

00al10070 o6d 6Ff 64
mode....$.......

PROPRIETARY AND CONFIDENTIAL

00 03 00

00 00 00

00 00 00

00 00 00

Oe 00 b4

70 72 6F

65 20 72

65 2e 0Od

0:000> !vprot al0000

BaseAddress:
AllocationBase:
AllocationProtect:
RegionSize:

State:

Protect:

Type:

00a10000
00a10000
00000004
00024000
00001000
00000004
00020000

00 00-04 00 00 00 ff ff 00 00
00 00-40 00 00 00 00 00 00 00
00 00-00 00 00O OO0 OO OO0 00 00
00 00-00 00 00 00 d8 00 00 00
09 cd-21 b8 01 4c cd 21 54 68
67 72-61 6d 20 63 61 6e 6e 6F 1Us program
75 6e-20 69 6e 20 44 4f 53 20 t be run in

0d 0a-24 00 00 00 OO0 OO 00 0O

PAGE_READWRITE

MEM_COMMIT
PAGE_READWRITE
MEM_PRIVATE

0:000> .writemem C:\stage3.bin al0000 L24000

Stage3.bin is basically the same as the unpacked version. We finally got the
unpacked version of this binary and were able to successful compare it with the

baseline binary. We determined that it was compiled from the same source base as

the baseline binary.

Virus Total Results

Appendix B shows the detailed VirusTotal results. A majority (28/43) of the AV
engines in VirusTotal identified this binary as malicious.

Page 8 of 42



PROPRIETARY AND CONFIDENTIAL

Entry Point Execution Flow Comparison

-textABM1BEAG public start
-text:@841BEAG start proc near
-text:80841BEAG
-text:-8041BEAG var_C
-text:8841BEAG hObject
-text:-BOM1BEAG pHumArgs
-text:8041BEAG

dword ptr -8Ch
dword ptyr -8
dword ptr -4

-textABM1BEAG push ebhp

-text:ABM1BERY moy ehp, esp

~text:0041BEAD sub esp, BCh

-text-8041BEAC push ebx

-text:A841BEAD xor BECX, BCX

ftext:00M1BEAF ®or bl, bl

-text:8841BEB1 call sub_41B808

-text:A841BEBG test al, al

-text:86841BEBS jz loc_41BF73

~text:00M1BEBE push 8887h » ublode
-text-8041BEC3 mov byte ptr [ebp+var_C], bl
-textABMBECH moy byte ptr [ebp+hObject], 1
-text:-B8041BECA call ds:SetErrorHode
-text:-0041BEDA 1lea eax, [ebp+pHumArgs]
-text:-8041BED3 push eax ; pHumArgs
-text:0041BEDL call ds:GetCommandLineW
-text:-A041BEDA push eax ; 1pCmdLine
-text:-8041BEDB call ds:CommandLineToArguW
-text:A041BEE1 test eax, eax

-text:ABM1BEEZ jz short loc_41BF4E
~text:00M1BEES xor edx, edx

-text-@041BEEY cmp [ebp+pHumArgs], edx
-text:ABM1BEER jle short loc_41BF2A
-text:8841BEEC

-text:8AM1BEEC loc_ M1BEEC: ; CODE RREF: start+78lj
-textABM1BEEC moy ecx, [eax+edx=h]
-text:A841BEEF test BECX, BCX

-text:-B041BEF1 jz short loc_ M1BF1A

Figure 2 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c unpacked entry point)

Figure 2 is the entry point disassembled in IDA Pro. Notice how Figure 1 (baseline
binary entry point) and Figure 2 are essentially identical even in the registers used.
We determined from this analysis that we were on track to show the binaries were
compiled from the same code base.

BinDiff Analysis

Zynamics BinDiff was used to do a full binary comparison between executables. It
can quickly show functions that are identical using different methods like edge
flowgraphs and call reference matching. Figure 3 shows a subset of the matched
functions.

Page 9 of 42



PROPRIETARY AND CONFIDENTIAL

similarity | confidence EA primary narme primary EA secondary name secondary algorithm

1.00 099 00414EF4 sub_414EF 416 00419FAG sub_419FAR 1053 edges flowgraph MD index
1.00 099 00414F5C cub_414F5C 417 0041 A00E cub_41A00E_1054 edges flowgraph MD index
1.00 099 00414FEB sub_414FBB_418 0041 206D sub_41A060_1055 edges flowgraph MD index
1.00 099 00415070 zub_ 415070 419 00414E84 cub_414E84 955 edges flowgraph MD index
1.00 0.99 00415117 sub_415117 420 00414F24 sub_414F24 956 edges flowgraph MD index
1.00 099 0041519F cub_41519F 421 00414FAC sub_414FAC_957 edges flowgraph MD index
1.00 099 0041526C sub_41526C 422 00415079 cub_415079 958 edges flowgraph MD index
1.00 099 0041550C sub_415500C 423 0040E9B2 sub_40E9B2 856 call reference matching
1.00 099 00415558 sub_415558_424 0040E9FE sub_40E9FE_B57 call reference matching
1.00 099 004155DE sub_41550E 425 0040EAR4 cub_40EAR4 858 edges flowgraph MD index
1.00 099 00415603 sub_415603_426 0040EAAD sub 40EAAD 559 prime signature matching
1.00 059 00415614 sub 415614 427 0040EABA sub 40EABA_EB0 call reference matching
1.00 096 00415CFA sub_415CFA_431 0040F1AD sub_40FLAD 865 call reference matching
1.00 0.599 00415E16 sub_415E16_432 0040F2BC sub_40F2BC_B66 call reference matching
1.00 099 00416059 sub_416059 433 0040F4FF sub_40F4FF_8567 edges flowgraph MD index
1.00 099 0041625E cub_41625E 434 0041 DEDS sub_41DE05_1115 edges flowgraph MD index
1.00 099 004162FE sub_4162FE 435 0041DEAS cub_41DEAS 1116 edges flowgraph MD index
1.00 099 00416369 sub_416369 436 0041 DFL0 sub_41DF10_1117 edges callgraph MD index
1.00 099 00416886 sub_416886 437 00415426 sub_415A26 964 edges flowgraph MD index
1.00 099 00416921 sub 416821 438 00415CAB sub_415CAG 968 call reference matching
1.00 099 004169E3 sub_4169B3 439 00415038 sub_ 415038 969 call reference matching
1.00 099 00416418 sub_416A18_ 440 00415090 sub_415080 970 call reference matching
1.00 0.599 004164408 sub_416A49 441 00415E2E sub_415E2E_971 call reference matching
1.00 099 00416CED sub_416CE0_442 00416065 cub_416065_972 edges flowgraph MD index
1.00 099 00416047 sub_ 416047 443 004160CC sub_4160CC 973 call reference matching
1.00 0.99 00416DBA sub_416DBA_444 00404E42 sub_404E42 564 edges flowgraph MD index
1.00 099 00416ED2 sub_416ED2_445 00404F54 cub_404F54_565 edges flowgraph MD index
1.00 099 00417743 sub 417743 446 0040582B cub_40582B_566 edges flowgraph MD index
1.00 099 00417819 cub 417819 447 00405841 cub_ 405841 567 edges flowgraph MD index
1.00 099 00417476 sub_417A76_448 004054AFE sub_405AFE_568 edges flowgraph MD index

Figure 3 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c Bindiff against baseline)

In total, 905 functions were matched with BinDiff. 899 functions were matched

with a similarity rating of 1.0 and confidence of greater than .9. To get this much

similarity between these 2 binaries, they both must have been compiled from the

same source code.

Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dc

This binary needed to be unpacked to get its decoded contents. It was packed with
the UPX packer.

Virus Total Results

22/43 anti-virus engines detected this binary as malicous. Appendix C has the
detailed results.

Page 10 of 42



PROPRIETARY AND CONFIDENTIAL

Entry Point Execution Flow Analysis

UPX1 :8841BEAG public start
UPX1:8841BEAG start proc near
UPX1:8841BEAG

UPX1:88M1BEAG var_C = dword ptr -BCh

UP¥1:8041BEAG hObject
UPX1:89881BEAG pHumArgs
UPX1:8841BEAG

dword ptr -8
dword ptr -4

UPX1:8841BEAG push ebp

UPX1 :8841BEART mov ebp, esp

UPX1:8841BEAY sub esp, BCh

UPX1:8841BEAC push ehx

UPX1:-8841BERD ®x0r BECX, BCX

UPX1:9841BEAF Xor bl, bl

UPX1:9841BEE call sub_41BOGB

UPX1:8841BEBG test al, al

UPX1:0041BEBS jz loc_ 41BF?73

UPX1 :8841BEBE push 8887h ; ubode
UPX1 :8841BEC3 mov byte ptr [ebp+var C], bl
UPX1:8841BECG mov byte ptr [ebp+hObject], 1
UPX1:8841BECAH call SetErrorHode

UPX1:9881BED S 1lea eax, [ebp+pHumArgs]
UPX1:8881BED3 push eax ; pPHumArgs
UPE1 :8841BED Y call GetCommandLineW
UPX1:8841BEDA push eax ; 1pCmdLine
UPX1:8841BEDBE call CommandLineToArguld

UPX1 :89841BEE test eax, eax

UPX1:8841BEE2 jz short loc_MH1BFAE
UPX1:-8841BEES ®x0r edx, edx

UPX1:8881BEEY cmp [ebp+pHumArgs], edx
UPX1:98041BEER jle short loc_41BF28
UPX1:8841BEEC

UPX1:0841BEEC loc_ M1BEEC: ; CODE XREF: start+78]lj
UPX1 :8841BEEC mov ecx, [eax+edx=h]

UPX1 :9841BEEF test ec¥, BCX

UPX1:8841BEF jz short loc_MH1BF1A

Figure 4 (9b259bc255fef873f1e41629fb67c30f0c40e5dc unpacked entry point)

After unpacking Figure 4 shows the same resemblance. Comparing Figure 1 and
Figure 4 shows that the entry points are identical.

BinDiff Analysis

We used Zynamics BinDiff to compare this binary against our baseline.

Page 11 of 42



PROPRIETARY AND CONFIDENTIAL

similarity confidence EA primary name primary EA secondary name secondary algorithm

1.00 0.99 0041B51C sub_41B61C_504 004148DD sub_4148DD_942 edges flowgraph MD index
1.00 0.99 0041B670 sub_41B670_505 00414931 sub_414931 943 MD index matching (callGraph MD index, top down)
1.00 0.99 0041B70C sub_41B70C_506 004149CD sub_4149CD 944 MD index matching (callGraph MD index, top down)
1.00 0.99 0041B7A8 sub_41B7A8_507 00414459 sub_414469 945 edges flowgraph MD index
1.00 099 0041B7EB sub_41B7EB_508 00414AAC sub_414AAC 946 edges flowgraph MD index
1.00 0.99 0041B824 sub_41B824 509 00414 AEB sub_414AEB 947 edges flowgraph MD index
1.00 0.99 0041B874 sub_41B874 510 00414B35 sub_414B35_948 edges flowgraph MD index
1.00 0.99 0041B8AD sub_41B8AD_511 00414B51 sub_414B61_949 edges flowgraph MD index
1.00 0.99 0041B8F4 sub_41B8F4 512 004170F7 sub_4170F7_1008 edges flowgraph MD index
1.00 096 0041B9BE sub_41B9BB_513 004171BE sub_4171BE 1009 call reference matching
1.00 096 0041B9FD sub_41B9F0_514 004171F3 sub_4171F3 1010 call reference matching
1.00 0.99 0041BA26 sub_41BA26_515 00417229 sub_417229 1011 edges flowgraph MD index
1.00 099 0041BATS sub_41BAT75_516 00417278 sub_417278 1012 edges flowgraph MD index
1.00 0.99 0041BBAD sub_41BBAD 517 00417343 sub_417343 1013 edges flowgraph MD index
1.00 0.99 0041BCT6 sub_41BCT6_518 00417479 sub_417479 1014 edges flowgraph MD index
1.00 0.99 0041BCDE sub_41BCDE 519 004174E1 sub_4174F1 1015 edges flowgraph MD index
1.00 0.99 0041BDG8 sub_41BDGE_520 00417568 sub_41756B_1016 edges callgraph MD index
1.00 0.99 0041C130 sub_41C130 521 00417933 sub_417933 1017 edges flowgraph MD index
1.00 0.99 0041C31E sub_41C31E 522 00417821 sub_417B21 1018 edges flowgraph MD index
1.00 0.99 0041C7B6 sub_41C7B6_523 00417FE9 sub_417FE9_1019 edges flowgraph MD index
1.00 096 0041 CCaF sub_41CCHF_524 00418472 sub_ 418472 1020 call reference matching
1.00 0.96 0041 CCRBO sub_41CCB0_525 00418483 sub_4184B3 1021 call reference matching
1.00 0.99 0041CCD9 sub_41CCD9_526 004184DC sub_4184DC 1022 edges flowgraph MD index
1.00 0.99 0041CCFC sub_41CCFC 527 004184FF sub_4184FF 1023 edges flowgraph MD index
1.00 0.99 0041CF13 sub_41CF13 528 00418716 sub_418716_1024 edges callgraph MD index
1.00 0.99 0041CF&7 sub_41CF87_529 00414BB5 sub_414BB5_950 edges flowgraph MD index
1.00 0.99 0041CFEG sub_41CFEG_530 00414C14 sub_414C14 951 edges flowgraph MD index
1.00 0.99 0041D0E4 sub_41D0E4_531 0040EET4 sub_40E8T4 854 call reference matching
1.00 0.99 00410114 sub 410114 532 0040EBAL sub_40EBAA 855 call reference matching
1.00 0.99 00410164 sub_41D164 533 00418980 sub_41898D0 1027 edges flowgraph MD index

Figure 5 (9b259bc255fef873f1e41629fb67c30f0c40e5dc BinDiff against baseline)
898 function out of 907 functions matched had a similarity rating of 1.0 and

confidence of greater than 0.92. This binary is virtually identical to the baseline and
both come from the same code base.

Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394

VirusTotal Results

Appendix D contains the detailed results from VirusTotal. 20 out of 43 anti-virus
engines in VirusTotal identified this binary as malicious.

Entry Point Execution Flow Analysis

Page 12 of 42



-data:-aay13CL2
-data:-aay13CcL2
-data:-aay13Cch2
-data:-aay13CcL2
-data:-a8413Ch2
-data:-aey13Ch2
-data-ae413C42
-data:e8413Cch2
-data:-88413CL3
-data:-aay13ChS
-data:-aay13CLE
-data:-aay13CcL0
-data:-a8413CL4B
-data:- a8y 13CaD
-data:-88413C52
-data:86413C5h
-data:-88413C5A
-data:-@ay13C5F
-data:-eay13C62
-data:-aey13Ch66
-data:-884813C6C
-data:-88813C6F
-data:-88313C78
-data:ee413Cc76
-data:-88413C77
-data:-@ay13Cc7D
-data:-eay13C7F
-data:-B88413C81
-data:-88413C83
-data:-88413C86
-data:-88413C88
-.data:88413C88
-data:-88413CHE
-data:-@ay13CEE
-data:-aay13C8D

PROPRIETARY AND CONFIDENTIAL

start
var_C

var_8
pHumArgs

loc_413C8ES8:

public start
proc near

= dword ptr -6Ch

push
mou
sub
push
push
Xxor
call
test
jz
push
mou
mou
call
1lea
push
call
push
call
test
jz
®or
cmp
jle

mou
test

jz

dword ptyr -8
dword ptr -4

ebp

ebp, esp

esp, BCh

ehx

8

bl, bl

near ptr unk_412D44

al, al

loc_413D6BF

8867h ; ulode
byte ptr [ebp+var C], bl
byte ptr [ebp+uvar_8], 1
ds:-SetErvrorHode

eax, [ebp+pHumArgs]

eax : pHumArgs
ds:GetCommandLineV

eax ; 1lpCmdLine
ds:CommandLineTofArgul

£ax, eax

short loc_413CER

edx, edx

[ebp+pHumArgs], edx
short loc_M13CBC

; CODE HREF: start+781j
ecx, [eax+edx=h]
eCX, ECH
short loc_413CB6

Figure 6 (1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 entry point)

Comparing Figure 1 and Figure 6 we see the code at their entry points are identical.

BinDiff Analysis

Due to the packer for this binary, BinDiff could not properly compare this binary
against the baseline.

Binary: bfcc02219321d1047cc0330454a61f6b276d06f6

Virus Total Results

Appendix E contains the detailed results from VirusTotal. 27 out of 43 anti-virus
engines in VirusTotal identified this binary as malicious.

Page 13 of 42



PROPRIETARY AND CONFIDENTIAL

Entry Point Execution Flow Analysis

UPX1:8841BEAG public start
UPX1:8841BEAG start proc near
UPX1: 884 1BEAG

UPX1:88M1BEAG var_C = dword ptr -8Ch

UP¥1:8041BEAG hObject
UPX1:89881BEAG pHumArgs
UPX1:8841BEAG

dword ptr -8
dword ptr -4

UPX1:8841BEAG push ebp

UPX1:8841BEART mov ebp, esp

UPX1:8841BEAY sub esp, BCh

UPX1:8841BEAC push ehx

UPX1:-8841BERD Xx0r BECX, BCX

UPX1:88041BEAF Xor bl, bl

UPX1:9841BEE call sub_41BOOB

UPX1:8841BEBG test al, al

UPX1:0041BEES jz loc_ 41BF?3

UPX1:8841BEBE push 8887h ; ubode
UPX1 :8841BEC3 mov byte ptr [ebp+var C], bl
UPX1:8841BECG mov byte ptr [ebp+hObject], 1
UPX1 :8841BECA call SetErrorHode

UPX1:9881BED S 1lea eax, [ebp+pHumArgs]
UPX1:8881BED3 push eax ; pPHumArgs
UPE1:8841BED Y call GetCommandLineW
UPX1:8841BEDA push eax ; 1pCmdLine
UPX1:8841BEDBE call CommandLineToArgul

UPX1 :89841BEE test eax, eax

UPX1:8841BEE2 jz short loc_MW1BFAE
UPX1:-88B41BEES Xx0r edx, edx

UPX1:88M1BEEY cmp [ebp+pHumArgs], edx
UPX1:88041BEER jle short loc_41BF28
UPX1:8841BEEC

UPX1:0841BEEC loc_ M1BEEC: ; CODE XREF: start+78]lj
UPX1 :8841BEEC mov ecx, [eax+edx=h]

UPX1 :9841BEEF test ec¥, BCX

UPX1:0841BEF1 jz short loc_MH1BF1A

Figure 7 (bfcc02219321d1047cc0330454a61f6b276d06f6 entry point)

Comparing Figure 1 and Figure 7 we see the code at their entry points are identical.

BinDiff Analysis

Page 14 of 42



similarity | confidence

1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00
1.00

0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.96
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99
0.99

PROPRIETARY AND CONFIDENTIAL

EA primary

00414CD1
00414DB2
00414EF4
00414F5C
00414FBE
00415070
00415117
0041519F
0041526C
0041550C
00415558
004155DE
00415603
00415614
00415CFA
00415E16
00416059
0041625E
004162FE
00416369
00416886
00416921
00416983
00416418
00416AA9
00416CED
00416047
00416DBA
00416ED2

name primary
sub 414CD1 414
sub_414DB2 415
sub 414EF4 416
sub 414F5C 417
sub_414FBB_418
sub_415070_419
sub 415117 420
sub_41519F 421
sub_415260C_422
sub_415500C_423
sub 415558 424
sub_4155DE_425
sub_415603_426
cub_ 415614 427
sub 415CFA 431
sub_415E16 432
sub_416059 433
sub_41625E_434
sub_4162FE_435
sub_ 416369 436
sub_416886_437
sub_416921 438
sub_4169B83 439
sub_416A18_440
sub 416449 441
sub 416CED 442
sub 416047 443
sub_4160BA_444
sub_416ED2_445

EA secondary
00419083
00419E64
00419FAG
0041 A00E
0041 4060
00414EBA
00414F24
00414FAC
00415079
0040E9B2
0040E9FE
0040EA84
0040EAAT
0040EABA
0040F1AD
0040F2BC
0040F4FF
0041 DEDS
0041DEAS
0041D0F10
00415426
00415CAG
00415038
00415090
00415E2E
00416065
004160CC
00404E42
00404 F5A

name secondary
sub_419D83 1051
sub_419E64_1052
sub_419FA6 1053
sub_41A00E 1054
sub_41A06D_1055
sub_414E8A 955
sub_414F24 956
sub_414FAC 957
sub_415079 958
sub_40E9B2_856
sub_40EIFE_857
sub_40EAB4 858
sub_40EAAG 859
sub_40EABA_860
sub_40FLAQ_865
sub_40F2BC_866
sub_40F4FF_867
sub_41DE05 1115
sub 41DEAS 1116
sub 41DF10 1117
sub_415A26_964
sub_415CA6_968
sub_415D38_969
sub_41509D_970
sub_415E2E 971
sub_416065_972
sub_4160CC 973
sub_404E42_564
sub_404F54_565

alaorithm

edges callgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
call reference matching
call reference matching
edges flowgraph MD index
prime signature matching
call reference matching
call reference matching
call reference matching
edges flowgraph MD index
edges flowgraph MD index
edges flowgraph MD index
edges callgraph MD index
edges flowgraph MD index
call reference matching
call reference matching
call reference matching
call reference matching
edges flowgraph MD index
call reference matching
edges flowgraph MD index
edges flowgraph MD index

Figure 8 (bfcc02219321d1047cc0330454a61f6b276d06f6 BinDiff against baseline)

899 out of 907 function had a similarity rating of 1.0 with confidence rating greater
than 0.88. This binary is nearly identical to the baseline and must have been
compiled from the same code base.

Initial Conclusion

After using entry point analysis and bindiff on the unpacked version of the binaries
we are able to conclude that all 5 binaries were compiled from the same code base.

Follow-Up Questions

1. Are these binaries similar to Zeus, and if so, how similar?
2. Were these binaries compiled with a Microsoft toolchain, and what evidence
supports this?

Fortunately, copies of the source code to Zeus have been made publicly available.

Our manual analysis of the recovered applications revealed many structural
similarities (see figure 9), but do these structural similarities originate from Zeus?

To answer this question, we compiled our own copy of Zeus and compared our copy

to each of the programs described so far.

Page 15 of 42



PROPRIETARY AND CONFIDENTIAL

We first compiled Zeus in the 'release’ configuration with symbols and compared it
to the unpacked version we were given with BinDiff.

similarity | confidence EA primary

1.00 098 00408334
1.00 0.98 0040B2F1
1.00 0.98 0040B18D
1.00 0.98 0040B147
1.00 0.98 0040B21C
1.00 098 0040B1D3
1.00 0.98 0040B2AB
1.00 0.98 0040B265
1.00 0.98 0040B101
1.00 039 0040B0BB
1.00 099 0040D20C
1.00 099 00409C81
1.00 089 00409853
1.00 059 0040D2A7
1.00 039 0040024C
1.00 097 00409043
1.00 089 00409821
1.00 0.97 00409020
1.00 039 00400365
1.00 0.99 0040D3F8
1.00 099 0040D2E6
1.00 089 0040B04D
1.00 0.97 00409D9E
1.00 087 00409070
1.00 098 0040B40C
1.00 0.98 0040B4AB
100 0.98 00408459
1.00 098 0040B3BF
1.00 059 00409C31

name primary

VncServer:hookerCallWindowProcA{long (*)(HWND_ *, uint,uint...
VncServer:hookerCallWindowProcW{long (*)(HWHND__ * uint,uin...

VncServerihookerDefDIgProcA(HWMND__ * uint, uint,long)
VncServerihookerDefDIgProcW{HWND__ *, uint,uint,long)

VncServershookerDefFrameProcA(HWND_ *,HWND__ *, uint,uint...
VncServer:hookerDefFrameProcW(HWND_ * HWND__ * uint,uin...

VncServer:hookerDefMDIChildProcA{HWND__ *, uint, uint,long)
VncServer:hookerDefMDIChildProcW{HWND__ *,uint,uint,long)
VncServerihookerDefWindowProcA(HWND_ *,uint,uint,long)
VncServer:hookerDefWindowProcW(HWND__ * uint,uint, long)
VncServer:hookerEndPaint(HWMND__ * tagPAINTSTRUCT const *)
VncServer:hookerGetCapture(void)
VncServer:hookerGetCursorPos(tagPOINT *)
WncServershookerGetDe(HWHND_ *)
VncServer:hookerGetDeEx(HWND_ * HRGM__* uleng)
VncServer:hookerGetMessageA(tagMSG *, HWND__ *, uint, uint)
VncServer:hookerGetMessagePos(void)
VncServer:hookerGetMessageW(tagMSG * HWND__ *, uint, uint)
VncServer:hookerGetUpdateRect(HWND__ * tagRECT *,int)
VincServer:hookerGetUpdateRgn(HWMND_ * HRGN_ *,int)
VncServer:hookerGetWindowDc(HWND__*)
VncServer:hookerOpenInputDesktop(ulong,int,uleng)

VncServerihookerPeekMessageA(tagMSG * HWND_ *,uint,uint,u...

VncServer:hookerPeekMessageW(taghSG * HWND_ * uint, uint,...
VncServer:hookerRegisterClassA(tagWMNDCLASSA *)
VncServer:hookerRegisterClassExA(tagWNDCLASSEXA ¥)
VncServer:hookerRegisterClassExWitagWNDCLASSEXW *)
VncServer:hookerRegisterClassW(tagWNDCLASSW 7)
VncServer:hookerReleaseCapture(void)

EA secondary
00406DFF
00406086
00406C52
00406C0C
00406CEL
00406C98
00406070
00406024
00406BCE
00406880
00412729
0041DAD1
0041D3A3
004127C4
00412769
0041DB32
00410371
0041DB70
00412882
00412915
00412803
00406812
0041DBEE
0041DBCO
00406ED1
00406F70
00406F1E
00406E34
0041DAS1

name secondary
sub_406DFF_257
sub_406DB6_256
sub_406CC52_251
sub_406C0C_250
sub_406CEL_253
sub_406C98_252
sub_406D70_255
sub_406D2A_254
sub_406BC6_249
sub_406B80_248
sub_412729_570
sub_41DAD1 737
sub_41D943 733
sub_4127C4 572
sub_412769_571
sub_41DB33_740
sub_41D971 732
sub_41DE70_739
sub_412882_575
sub_412915 576
sub_412803_573
sub_406B12_246
sub_41DBEB_742
sub_41DBC0_741
sub_406ED1_260
sub_406F70_262
sub_406F1E_261
sub_406E84_259
sub_41DAB1 736

algorithm

address sequence

address sequence

address sequence

address sequence

address sequence

address sequence

address sequence

address sequence

address sequence

MD index matching (callGraph MD index, top down)
MD index matching (callGraph MD index, top down)
edges flowgraph MD index

MD index matching (flowgraph MD index, top down)
MD index matching (callGraph MD index, top down)
prime signature matching

MD index matching (callGraph MD index, top down)
prime signature matching

MD index matching (callGraph MD index, top down)
MD index matching (flowgraph MD index, top down)
prime signature matching

MD index matching (callGraph MD index, top down)
MD index matching (flowgraph MD index, top down)
MD index matching (callGraph MD index, top down)
MD index matching (callGraph MD index, top down)
call sequence matching(sequence)

call sequence matching(sequence)

call sequence matching(sequence)

call sequence matching(sequence)

edges flowgraph MD index

Figure 9 (Compiled Zeus with Symbols against baseline)

BinDiff shows us the baseline and our compiled version is identical. 895 total

functions were matched. 703 of those were functions had an associated symbol
name. 698 out of the 895 matched functions had a similarity rating of 1.00 and

confidence value of 0.92 or greater. In other words: our samples are compiled

versions of Zeus.

Next we searched for functions within our copy of Zeus that had a very low

probability of being duplicated or copied by accident. We chose the screenshot logic,

the API interception logic, and VNC server implementation. In every case, there was

an exact or extremely high match in the control flow graph between our copy of
Zeus and the programs that we analyzed.

Programs are defined by a sequence of statements. Each statement is an instruction

to perform a discrete operation. These statements are linked together into a graph.

At every point where a program could do one thing or another, a statement can

conditionally branch to a new node in the graph. In this way, any logical instructions
can be represented by computer code.

Page 16 of 42



PROPRIETARY AND CONFIDENTIAL

We used the Interactive Disassembler (IDA) to find and extract control flow graphs
from each of the applications we were given and also the copy of Zeus that we
compiled. Below are these graphs displayed:

=k

=

Figure 10 (Our Compiled Zeus)

T

Page 17 of 42



PROPRIETARY AND CONFIDENTIAL

Figure 11 (2cc1076f3c6e65d0a59792b75370b04613258ffa hooking function)

Page 18 of 42



PROPRIETARY AND CONFIDENTIAL

]

Figure 12 (9b259bc255fef873f1e41629fb67c30f0c40e5dc hooking function)

Page 19 of 42



PROPRIETARY AND CONFIDENTIAL

)

Figure 13 (0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c hooking function)

Page 20 of 42



PROPRIETARY AND CONFIDENTIAL

Figure 14 (1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 hooking function)

Page 21 of 42



PROPRIETARY AND CONFIDENTIAL

Figure 15 (bfcc02219321d1047cc0330454a61f6b276d06f6 hooking function)

We have highlighted in red all of the blocks that belong to a loop. Note that the
structure of this function is identical across each program. Each instance has a single
loop and the same sequence of tests. This function matches the function named
WaHook::_hook (Appendix G).

This source code is responsible for detouring APIs to hook routines supplied by
Zeus. These hook routines change the behavior of the operating system.

Another thing these similarities tell us is that it is highly likely that Microsoft

compilers were used to build this version of Zeus. We built Zeus with a Microsoft
compiler, and the following code was produced (from the above function):

Page 22 of 42



PROPRIETARY AND CONFIDENTIAL

bl e 5T
lea eax, [ebp+fl0ldProtect]

push eax ; 1pfl0ldProtect

push 48h s F1MewProtect

push 1Eh ; duSize

push [ebp+lpBaseAddress] ; lpAddress

push BFFFFFFFFh ; hProcess

call ds:__imp_ VUirtualProtectEx@28 ; VirtualProtectEx(x,®,X,x,%)
test eax, eax

jz loc 4178C1

The “push” statements are used to pass arguments to the call to the function
“VirtualProtect. We can find this exact block in each of the other programs control

flow graphs for this function:

il w5 =
1ea eax, [ebp+Ffl01ldProtect]

push eax ; 1pfl01dProtect
push 48h ; FlHewProtect
push 1Eh ; dusSize

push [ebp+1lpBasefddress] ; 1lpAddress
push BFFFFFFFFh ; hProcess

call UirtualProtectEx

test eax, eax

jz loc_ 4BCB76

...and they are identical.

We compiled this function from source code using the gcc compiler. The Intel
assembly language is very expressive and multiple statements are functionally

equivale

nt to each other. Which statements are used is a choice that the compiler

makes when it compiles the program. The choices that compilers make are generally
quite different. Here is the resulting assembly code for the above snippet as

produced by gcc:

il

mou eax, [esp+7Ch+uvar_C]
mou ecx, [esp+7Ch+1pAddress]
1ea esi, [esp+7Ch+fl01ldProtect]
mou [esp+7Ch+1pfl0ldProtect], esi ; 1lpfl0ldProtect
mou [esp+7Ch+1pBasefiddress], ecx ; lpAddress
mou [esp+7Ch+hProcess], eax ; hProcess
mov [esp+fCh+f1HewProtect], s 'E° ; FlNewProtect
mou [esp+7Ch+1pBuffer], 1Eh ; duSize
call dword ptr ds: imp UirtualProtectEx@28 ; UirtvalProtectEx(x,®,x,%,x)
sub esp, 14h
test eax, eax
jz loc 2BB

Page 23 of 42




PROPRIETARY AND CONFIDENTIAL

The structure is radically different. Note that no “push” instructions are used.
However, the resulting code is still functionally equivalent.

We also performed a mechanized comparison of the structure of the control flow
graphs in each of the five programs, comparing the structure to that of the Zeus
binary we built from source. We would have a program perform static control flow
reconstructions from the program images, and then use a very simple algorithm to
discover functions within the program. Once it discovered functions within the
program, it extracts them into an intermediate form that can be analyzed with the
NetworkX graph analysis library.

We asked NetworkX which graphs in each program were identical to other graphs.
The results are below

Program # of Functions in Zeus
functions matching
identified functions in those

programs

Compiled Zeus 154 -

Occstage3.bin 139 125

1bfddump_.bin 100 103

9b25dump_.bin 139 125

bfccdump_.bin 139 125

2cc1076f3c6e65d0a59792b75370b04613258ffa | 138 125

This shows that for the functions we identified in these binaries, almost all of them
are structurally identical to functions that are within Zeus.

Fuzzy Hashing

We used the industry standard 'fuzzy' hashing technique via the ssdeep program to
compare the unpacked binaries. The fuzzy hashing method works on byte-level
similarity. It can be confused by function reordering and other simple obfuscation
techniques.

Three of the files we analyzed, 9b25dump_.bin, Occstage3.bin, and bfccdump_.bin,
were found to be similar to each other using fuzzy hashing. This result gives us a

Page 24 of 42



PROPRIETARY AND CONFIDENTIAL

high degree of confidence that these three files are essentially the same. They have
large stretches of identical patterns of bytes.

Page 25 of 42



PROPRIETARY AND CONFIDENTIAL

Phase Il

We were given another set of binaries and asked to analyze and compare the
capabilities of a sample from all three sets of binaries.

PCRE

This sample set contained no valid win32 applications to analyze. These binaries are
likely encoded with a password that was not provided.

SPYEYE

In this sample set we chose the file with the hash:
b33064449295083dbfec12634523d805

because the first layer of obfuscation was UPX which, due to time constraints,
reduced the amount of time required to get the original binary. This file was a valid
win32 application, but had two layers of obfuscation. The first layer was UPX. The
second layer was not determined, but we were able extract a binary that closely
resembles the original. After some reverse engineering the capabilities of this
binary are:

Window enumeration

Take screenshot of desktop
Retrieve clipboard data
keyboard logging

Retrieve system information
Communicate with C&C server using HTTP
Enumerate user accounts

File Search

Remote process code injection
Manipulate Windows registry
Process enumeration

Read arbitrary file contents

Standard TCP socket communication
Download and execute payloads

ICE-IX

In this sample we chose the file with the hash:

3¢c6839c4ce744c9c0ddf2ba06963c3f4

Page 26 of 42



PROPRIETARY AND CONFIDENTIAL

Because it was not obfuscated. After reverse engineering the binary the capabilities
of this binary are:

Zeus

Take screenshot of desktop
Remote process code injection
Retrieve system information
User account enumeration
keyboard logging

Process enumeration

File search capability

Get contents of arbitrary file
Encrypt/Decrypt data using the Windows crypto API
Manipulate Windows registry
Communicate with C&C via HTTP

Standard TCP socket communication
Download and execute payloads

Taking a closer look at our Zeus binaries and comparing them to Spyeye and ICE-IX
functionality is very similar. Here is a list of the functionality Zeus supports

Take screenshot of desktop
Remote process code injection
Retrieve system information
keyboard logging

VNC server

HTTP injection

Communicate with C&C via HTTP
Download and execute payloads
Process enumeration

Self delete using bat file

intercept Windows API functions
Manipulate Windows registry

Conclusion

Based on the functionality of all the samples we analyzed, they all had a very similar
set of capabilities that can be attributed to malicious intent.

E-mail Analysis

We were also given e-mails that had been sent purporting to be from NACHA but
had actually originated from malware authors. The e-mails were sent with the intent

Page 27 of 42



PROPRIETARY AND CONFIDENTIAL

to compromise computers of the recipients. These e-mails are easy to find as their
subject and body contain references to an ACH payment being rejected. The e-mails
direct the recipient to a URL that the e-mail states is a Microsoft Word document
providing more information. Actually, the URL in the e-mail is a link to a website
that hosts malicious software.

For example, in an e-mail (file 11905A7A-00000B01.eml), an e-mail originally sent
on Thu, 15 Feb 2012 with the subject “Your ACH transfer” purports to inform the
recipient that an ACH transaction involving their account has failed.

It contains a URL to a “Transaction report”:

<td><font face="Verdana"><a href="http://kurabiyeji.com/]Xt8y6Au/index.html"
>report_7429595642193.doc</a> (Microsoft Word Document) </font></td>

The content hosted at this URL is known to be malicious by VirusTotal. The clean-
mx.de database reports that the URL is known to be malicious:

OLine [i-2 23 ODatet ¥+ OClosedt ¥+ ©Ohours @contributort+ ¥+ Qvirusnamet+ QURLT + ©ip state Oresponset +

1 4 1264377 B & £ 2012-02-16 17:52:50 4+ sup1a [E 4+ 4 [4e4740 (10%) HTML:Seript-inf & hitp://kurabiveil.com/hsiElugh/indesx htm ... up K alive-367113

(http://support.clean-mx.de/clean-
mx/viruses.php?domain=kurabiveji.com&sort=first%20desc)

VirusTotal reports the file served by that domain is malicious and detected as:

Antivirus Result Update

nProtect Trojan.Agent.AUIJ 20120222
CAT-QuickHeal - 20120222
McAfee - 20120223
K7AntiVirus - 20120222
TheHacker - 20120222
VirusBuster - 20120222
NOD32 JS/TrojanDownloader.HackLoad.AH 20120223
F-Prot JS/Redir.10 20120222
Symantec - 20120223
Norman - 20120222
ByteHero - 20120225
TrendMicro-HouseCall - 20120223
Avast HTML:Script-inf 20120223
eSafe - 20120221
ClamAV - 20120223
Kaspersky Trojan.HTML.Redirector.z 20120223
BitDefender Trojan.Agent.AU]J 20120223
ViRobot - 20120222
Emsisoft Trojan.HTML.Redirector!IK 20120223
Comodo UnclassifiedMalware 20120223
F-Secure Trojan.Agent.AUIJ 20120223

Page 28 of 42



PROPRIETARY AND CONFIDENTIAL

DrWeb - 20120223
VIPRE - 20120222
AntiVir - 20120222
TrendMicro - 20120222
McAfee-GW-Edition - 20120222
Sophos Mal/JSRedir-H 20120223
eTrust-Vet - 20120222
Jiangmin - 20120222
Antiy-AVL - 20120213
Microsoft Trojan:JS/BlacoleRef.AA 20120222
SUPERAntiSpyware - 20120206
Prevx - 20120227
GData Trojan.Agent.AUI]J 20120223
AhnLab-V3 JS/Blacoleref 20120222
VBA32 - 20120222
PCTools - 20120221
Rising - 20120223
Ikarus Trojan.HTML.Redirector 20120223
Fortinet - 20120223
AVG - 20120223
Panda - 20120222

Page 29 of 42




Appendix A

PROPRIETARY AND CONFIDENTIAL

Binary: 2cc1076f3c6e65d0a59792b75370b04613258ffa Virus Total Results

AhnLab-V3 Trojan/Win32.Zbot 20120107
AntiVir TR/Hijacker.Gen 20120106
Antiy-AVL Trojan/Win32.Zbot.gen 20120107
Avast Win32:Zbot-NRC [Trj] 20120107
AVG PSW.Generic9.AUZR 20120108
BitDefender Gen:Variant.Kazy.1779 20120108
ByteHero Trojan.Win32.Heur.Gen 20111231
CAT-QuickHeal - 20120107
ClamAV Trojan.Spy.Zbot-142 20120107
Commtouch W32 /Zbot.BR.gen!Eldorado 20120107
Comodo UnclassifiedMalware 20120107
DrWeb Trojan.PWS.Panda.1545 20120108
Emsisoft Trojan-Spy.Win32.Zbot!IK 20120108
eSafe - 20120103
eTrust-Vet Win32/Zbot.CXZ 20120106
F-Prot W32 /Zbot.BR.gen!Eldorado 20120107
F-Secure Gen:Variant.Kazy.1779 20120108
Fortinet W32/Zbot.AT!tr 20120107
GData Gen:Variant.Kazy.1779 20120108
Ikarus Trojan-Spy.Win32.Zbot 20120107
Jiangmin - 20120107
K7AntiVirus Riskware 20120106

Page 30 of 42




PROPRIETARY AND CONFIDENTIAL

Kaspersky Trojan-Spy.Win32.Zbot.ctaq 20120108
McAfee PWS-Zbot.gen.ds 20120108
McAfee-GW-Edition PWS-Zbot.gen.ds 20120107
Microsoft PWS:Win32/Zbot.gen!Y 20120107
NOD32 Win32/Spy.Zbot.YW 20120108
Norman W32/Zbot.VAL 20120107
nProtect Gen:Variant.Kazy.1779 20120107
Panda Generic Trojan 20120107
PCTools - 20120108
Prevx - 20120108
Rising - 20120106
Sophos Troj/PWS-BSF 20120107
SUPERAntiSpyware - 20120107
Symantec - 20120108
TheHacker - 20120106
TrendMicro TROJ_GEN.FFFCBLU 20120107
TrendMicro-HouseCall TROJ_GEN.FFFCBLU 20120108
VBA32 SScope.Trojan.FakeAV.01110 20120106
VIPRE Trojan-Spy.Win32.Zbot.val (v) 20120108
ViRobot - 20120107
VirusBuster TrojanSpy.Zbot!/ky2LKcfC2c 20120107

Page 31 of 42




Appendix B

PROPRIETARY AND CONFIDENTIAL

Binary: 0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c Virus Total Results

AhnLab-V3 Trojan/Win32.FakeAV 20120102
AntiVir TR/Kazy.48131.4 20120102
Antiy-AVL Trojan/Win32.Injector.gen 20120102
Avast Win32:MalOb-HP [Cryp] 20120102
AVG Generic26.ZLQ 20120102
BitDefender Gen:Variant.Kazy.48131 20120102
ByteHero - 20111231
CAT-QuickHeal - 20120102
ClamAV - 20120102
Commtouch - 20120102
Comodo Heur.Suspicious 20120102
DrWeb - 20120102
Emsisoft Trojan-Spy.Win32.SpyEyes!IK 20120102
eSafe Win32.TRKazy 20120101
eTrust-Vet = 20120102
F-Prot - 20120102
F-Secure Gen:Variant.Kazy.48131 20120102
Fortinet W32 /Rorpian.Cltr 20120102
GData Gen:Variant.Kazy.48131 20120102
Ikarus Trojan-Spy.Win32.SpyEyes 20111231
Jiangmin - 20120101
K7AntiVirus Trojan 20120102

Page 32 of 42




PROPRIETARY AND CONFIDENTIAL

Kaspersky Trojan-Dropper.Win32.Injector.aiaz 20120102
McAfee Artemis!98E1ECD8C6D7 20120102
McAfee-GW-Edition Artemis!98E1ECD8C6D7 20120101
Microsoft PWS:Win32 /Zbot 20120102
NOD32 a variant of Win32 /Kryptik.XDP 20120102
Norman W32 /Suspicious_Gen2.UDXVY 20120102
nProtect - 20120102
Panda Trj/CLA 20120102
PCTools - 20120102
Prevx - 20120102
Rising - 20111231
Sophos Mal/Rorpian-D 20120102
SUPERAntiSpyware - 20111230
Symantec WS.Reputation.1 20120102
TheHacker Trojan/Dropper.Injector.aiaz 20111231
TrendMicro TROJ_FAKEAV.BMC 20120102
TrendMicro-HouseCall TROJ_FAKEAV.BMC 20120102
VBA32 TrojanDropper.Injector.aiaz 20120102
VIPRE Trojan.Win32.Generic!BT 20120102
ViRobot - 20120102
VirusBuster - 20120102

Page 33 of 42




Appendix C

Binary: 9b259bc255fef873f1e41629fb67c30f0c40e5dc Virus Total Results

PROPRIETARY AND CONFIDENTIAL

AhnLab-V3 Trojan/Win32.Zbot 20111218
AntiVir - 20111216
Antiy-AVL - 20111218
Avast Win32:Malware-gen 20111218
AVG PSW.Generic9.AVXE 20111218
BitDefender Trojan.Generic.KDV.481715 20111218
ByteHero Trojan.Win32.Heur.Gen 20111207
CAT-QuickHeal - 20111218
ClamAV - 20111218
Commtouch W32 /Zbot.DD7.gen!Eldorado 20111217
Comodo TrojWare.Win32.Trojan.Agent.Gen 20111218
DrWeb - 20111218
Emsisoft Trojan-PWS.Win32.Zbot!IK 20111218
eSafe - 20111215
eTrust-Vet = 20111216
F-Prot W32 /Zbot.DD7.gen!Eldorado 20111217
F-Secure Trojan.Generic.KDV.481715 20111218
Fortinet W32 /Zbot.EZ!tr.pws 20111218
GData Trojan.Generic.KDV.481715 20111218
Ikarus Trojan-PWS.Win32.Zbot 20111218
Jiangmin - 20111218
K7AntiVirus - 20111215

Page 34 of 42




PROPRIETARY AND CONFIDENTIAL

Kaspersky Trojan-Spy.Win32.Zbot.ctnl 20111218
McAfee PWS-Zbot.gen.hb 20111218
McAfee-GW-Edition PWS-Zbot.gen.hb 20111218
Microsoft PWS:Win32/Zbot.gen!Y 20111218
NOD32 probably a variant of Win32 /Spy.Agent MOVGWFV 20111218
Norman - 20111218
nProtect - 20111218
Panda Trj/CLA 20111218
PCTools - 20111218
Prevx - 20111218
Rising - 20111216
Sophos Mal/Zbot-EZ 20111218
SUPERAntiSpyware - 20111217
Symantec - 20111218
TheHacker - 20111218
TrendMicro - 20111218
TrendMicro-HouseCall TROJ_GEN.R3EC7LI 20111218
VBA32 - 20111214
VIPRE Trojan.Win32.Generic!BT 20111218
ViRobot - 20111218
VirusBuster - 20111218

Page 35 of 42




Appendix D

PROPRIETARY AND CONFIDENTIAL

Binary: 1bfdc4f2cfa48a1f063d1826992fbaf5e2924394 Virus Total Results

AhnLab-V3 Spyware/Win32.Zbot 20120107
AntiVir TR/Offend.7118272.1 20120106
Antiy-AVL - 20120107
Avast Win32:Spyware-gen [Spy] 20120107
AVG PSW.Generic9.BAQF 20120107
BitDefender - 20120107
ByteHero - 20111231
CAT-QuickHeal - 20120107
ClamAV - 20120107
Commtouch - 20120107
Comodo - 20120107
DrWeb Trojan.PWS.Panda.547 20120107
Emsisoft Trojan-PWS.Win32.Zbot!IK 20120107
eSafe - 20120103
eTrust-Vet - 20120106
F-Prot - 20120107
F-Secure - 20120107
Fortinet W32 /Zbot.DDHL!tr 20120107
GData Win32:Spyware-gen 20120107
Ikarus Trojan-PWS.Win32.Zbot 20120107
Jiangmin - 20120107
K7AntiVirus Spyware 20120106

Page 36 of 42




PROPRIETARY AND CONFIDENTIAL

Kaspersky Trojan-Spy.Win32.Zbot.ddhl 20120107
McAfee PWS-Zbot 20120107
McAfee-GW-Edition PWS-Zbot 20120107
Microsoft PWS:Win32/Zbot 20120107
NOD32 Win32 /Spy.Zbot.YW 20120107
Norman - 20120107
nProtect - 20120107
Panda Trj/CLA 20120107
PCTools - 20120107
Prevx - 20120107
Rising - 20120106
Sophos - 20120107
SUPERAntiSpyware - 20120107
Symantec - 20120107
TheHacker - 20120106
TrendMicro TROJ_GEN.FFFCBA2 20120107
TrendMicro-HouseCall TROJ_GEN.FFFCBA2 20120107
VBA32 - 20120106
VIPRE Trojan.Win32.Generic!BT 20120107
ViRobot - 20120107
VirusBuster TrojanSpy.Zbot!Z8ZuEWTrK2A 20120107

Page 37 of 42




Appendix E

PROPRIETARY AND CONFIDENTIAL

Binary: bfcc02219321d1047cc0330454a61f6b276d06f6 Virus Total Results

AhnLab-V3 Trojan/Win32.Agent 20111217
AntiVir TR/PSW.Zbot.Y.2082 20111216
Antiy-AVL Trojan/win32.agent.gen 20111217
Avast Win32:Spyware-gen [Spy] 20111217
AVG PSW.Generic9.AVOM 20111217
BitDefender Gen:Variant.Kazy.48419 20111217
ByteHero Trojan.Win32.Heur.Gen 20111207
CAT-QuickHeal - 20111217
ClamAV - 20111217
Commtouch - 20111217
Comodo TrojWare.Win32.Trojan.Agent.Gen 20111217
DrWeb Trojan.PWS.Panda.1533 20111217
Emsisoft Trojan-Spy.Win32.Zbot!IK 20111217
eSafe - 20111215
eTrust-Vet = 20111216
F-Prot - 20111217
F-Secure Gen:Variant.Kazy.48419 20111217
Fortinet W32 /Zbot.EZ!tr.pws 20111217
GData Gen:Variant.Kazy.48419 20111217
Ikarus Trojan-Spy.Win32.Zbot 20111217
Jiangmin - 20111217
K7AntiVirus Spyware 20111215

Page 38 of 42




PROPRIETARY AND CONFIDENTIAL

Kaspersky Trojan-Spy.Win32.Zbot.csyl 20111217
McAfee PWS-Zbot.gen.hb 20111217
McAfee-GW-Edition PWS-Zbot.gen.hb 20111216
Microsoft PWS:Win32/Zbot.gen!Y 20111217
NOD32 a variant of Win32 /Kryptik.XGG 20111217
Norman - 20111217
nProtect = 20111217
Panda Trj/CLA 20111217
PCTools Trojan.Gen 20111217
Prevx - 20111217
Rising - 20111216
Sophos Mal/Zbot-EZ 20111217
SUPERAntiSpyware - 20111217
Symantec Trojan.Gen.2 20111217
TheHacker - 20111216
TrendMicro TROJ_GEN.FFFCZLF 20111217
TrendMicro-HouseCall TROJ_GEN.FFFCZLF 20111217
VBA32 - 20111214
VIPRE Trojan.Win32.Generic!BT 20111217
ViRobot - 20111217
VirusBuster - 20111216

Page 39 of 42




PROPRIETARY AND CONFIDENTIAL

Appendix F

DWORD WaHook: :_hook(HANDLE process, void *functionForHook, void *hookerFunction, void
*originalFunction, HOTPATCHCALLBACK hotPatchCallback)

{

DWORD retval = 0;

DWORD oldProtect;
DWORD_PTR avalibeBytes = checkAvalibleBytes(process, functionForHook);

if(avalibeBytes >= OPCODE_MAX_SIZE * 2 && CWA(kernel32,

VirtualProtectEx) (process, functionForHook, OPCODE_MAX_SIZE * 2, PAGE_EXECUTE_READWRITE,
&oldProtect) != 0)
{

//N+e008381 noadlé éTa.
BYTE buf[OPCODE_MAX_SIZE * 2 + JMP_ADDR_SIZE];
Mem: :_set(buf, (char)0x90, sizeof(buf));/*Tacaity*/

iT(CWA(kernel32, ReadProcessMemory)(process, functionForHook, buf,

OPCODE_MAX_SIZE * 2, NULL) == O)goto END;

//xe0aa1 TréTan, 1Téa ed noiiadiay aeéfa fa aTnoeaieo INJECT_SIZE.
DWORD_PTR opcodeOffset = 0O;

for(;;)

{

LPBYTE currentOpcode = buf + opcodeOffset;

DWORD currentOpcodeLen = Disasm::_getOpcodeLength(currentOpcode);
//T14ecadnoite TréTa.

if(currentOpcodelLen == (DWORD)-1)

#if defined(WDEBUG2)
WDEBUG2(WDDT_ERROR, "Bad opcode detected at offset %u for function Ox%p",

opcodeOffset, functionForHook);

#endif

goto END;
}

opcodeOffset += currentOpcodelen;
iT(opcodeOffset > sizeof(buf) - JIVP_ADDR_SIZE)
{

#if defined(WDEBUG2)
WDEBUG2(WDDT_ERROR, "Very long opcode detected at offset %u for function

Ox%p', opcodeOffset - currentOpcodelLen, functionForHook);

#endif

goto END;
3
//T01Thoed8uiod call & jmp.
if((currentOpcode[0] == OXE9 || currentOpcode[0] == OXE8) &&

currentOpcodelLen == 1 + sizeof(DWORD)) //FIXME: T4 6A48aiT &6y x64.

{
# it defined(WDEBUGO)
WDEBUG1(WDDT_INFO, "Relative JMP/CALL(%02X) detected.", currentOpcode[0]);
# endif
DWORD *relAddrSet = (DWORD *)(currentOpcode + 1);
DWORD_PTR to = (*relAddrSet) + ((DWORD_PTR)functionForHook +
opcodeOffset);
*relAddrSet = (DWORD)(to - ((DWORD_PTR)originalFunction + opcodeOffset));
}

if(opcodeOffset >= INJECT_SIZE)break;

Page 40 of 42



PROPRIETARY AND CONFIDENTIAL

//\T65aTyaT ToedeTaeuiod TréTad a originalFunction.

//ATTen0aadl a éTrao acoada, jump fa ToTatézdied functionForHook.

LPBYTE pjmp = buf + opcodeOffset;

WRITE_JIMP(pjmp, originalFunction/* + opcodeOffset*/, functionForHook/* +
opcodeOffset*/);

if(CWA(kernel32, WriteProcessMemory)(process, originalFunction, buf,
opcodeOffset + JVUP_ADDR_SIZE, NULL) == 0)goto END;

}
//Tégel eixdéo & 66Tévep.

WRITE_JMP(buf, functionForHook, hookerFunction);
hotPatchCal Iback(functionForHook, originalFunction);
iT(CWA(kernel32, WriteProcessMemory)(process, functionForHook, buf,
INJECT_SIZE, NULL) == 0)goto END;
3

retval = opcodeOffset + JMP_ADDR_SIZE; //DPacidd aldacaiTal 68adiaioa.

END:
//ATifdATaEeaad1 Toada.
CWA(kernel32, VirtualProtectEx)(process, functionForHook, OPCODE_MAX_SIZE * 2,
oldProtect, &oldProtect);
3

return retval;

}
Raw data on what ‘file’ says each file is:

munin@ubuntu-dev:~/sample_set_1$ find ./ -exec file "{}" \;

./: directory

./0231ced00c5e62debad427fa785e19e0481a2leb5a: data
./Ta3e447fcbh80d73284clec082ecec8b5e8c69290: data
./9e3bc6596fe0ff57312ba7fe9144dfbb7321f5d5: data
./63552eb629f61e2c80F97F6b71394875cel18639d: data
./c014dafb8cd26a777e6abc94bb01a814e29c0dc9: DOS executable (COM)
./8e2adb39e651c50c9fd7cfeef66f27b4cded27f1: data
-/9569c711275524c5c00547F0c90be3d2b36252d1: DOS executable (COM)
./efb2e69a4c2a74¥1688166881a61477Ffc38cc486: data
./53cecd632d2fe0cd4416ce32d7767F0F39e24223: data
./cfbc6664715190458b3e5a83d22895507FF35F4f: data
./e2e44b8114Ff07cee665a21F0450a727326b3d341: data
./19174b7¥1897b786e€914ad6e7932d0d82F086¢c2e: data
./e8edff3539053ebfbf79fdaeded6c3234a76de5b: data
./4c2ba64f8fo75F752fc33F77733dd7df7b10064f: data
./3c12b15eb7b453d0230bc5c476b2acc2e69bl14e5: data
./ae713567f6ebe908ebb9925d7ef65967b52571a4: data
./6b7dd7e579c9f6cc1276¥183d0397800a9b5497b: data
-/9e2a7be7d2f7a055ef8Fe9a89325991158¥3425c: Macintosh MFS data (locked)
created: Thu Dec 12 22:26:15 2052, last backup: Thu May 22 21:48:39
2003, block size: 390163271, number of blocks: 38443, volume name:
z\313\277\200{\224%="9\274\375\275\273X\022\260\261_n
./cfo0b2dcf802a44938cbed44774add891354bcb56: data
./8d41841fFfc243ce69c7a2ab2ebd45fc11623d14b: data
./ec8d707213a73c8978472d62d5578e5bf83e1f85: data
./ccdd65b99ded0f2c68d0b81525Fab194¥88d9052: data
./245dd76226340ba68e8e7c69ad558887e4cca708: data
./400ad5fb66574398e036ae817b653bcdabe7ca77: data
./ec9833c61f4547ba7c3f93b55eecch4b8aabd516: data

Page 41 of 42



PROPRIETARY AND CONFIDENTIAL

./2ebbc25ad676d9fddcf9483e184F0df193da275e: data
./¥d441b7b7cf3c56el12ea8bdbf5dcc712f5b51aee: data
./a8a422e21a040291cdb5cb676b3769fb5dfebb30: data
./8602882e53520155be5bf35e447b6a51d5c060a2: ASCI1 HTML document text
./71fc9a3c9332259716e8e60692cef4bbf8b46263: data
./b002711696Ff7b2dafc812e6b75a7bdefeb68848b: ASCII HTML document text,
with very long lines

./758ba418clcffa97bc67b8¥928095d6164cfbccb: data
./58fbTba34100d8252a35fh80a49220cbe742cddc: data
./7743d59c358a9830fa8a861e227F30f20395b0da: data
./89ccfeb3clfed40ad606ca75bb7bfal7aa470d7b4: data
./c6db00d3860ec87a80b9e681cce9bd360356a9fd: data
./1bfdc4f2cta48a1t063d1826992fbaf5e2924394: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./c0784b799676b1da42f7ddb0c260484aecc02bl16: data
./09111524999469ecbed82b80f6034bc2bc7df6e9: data
./748F7b05ecd7cf5d09902334Ffdcc04b255394379: HTML document text
./e86834d32fe96a51f6c1a0cfd62764522c4659ad: data
./adafa84402214d74744794c7bac6e886e5012Fffd: data
-/b858ch2826171h0956d960215c8e84d1ccf909c6: very short File (no magic)
./697490076065b855c6f417a79ac9d69e7553008a: data
./b3dababe6ed5ef18d7c9fd9a570f01a850cc9867: data
./be080fcef59cd497eb9f686b90669F7413795187: data
./a2c35aa79379a3e72ad0607abbfe6095d5f4539d: SoftQuad troff Context
intermediate

./d2200e1a1587878a2c68ee66007226039fF23ec9: data
./2428aad59d5abb344196273724147b9c24ffbc7d: ASCII text, with CRLF line
terminators

./ef99005f5ed1d8db4aa57e5c4fd1da040e370115: DBase 3 data file with
memo(s)

./d649b4d83a0d0a2c571187b79d9c815255c44feb: data
./14156629bF2¥3c9bbd6a599dd64b6808bd0b28b6: data
./c19ae7572¥1592d798e96d7a09b76e63c3b341bl: data
./2cc1076f3c6e65d0a59792b75370b04613258FfFa: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
-/4089097915b5de378c9ffb0180F02790F48d4d21: DOS executable (COM)
./5c286793ebled4ef94932b8b1ef0fd03795d083b: data
./al11719211d886dbe060ebc6348f6f60c603cc40c: data
./5a7f37bc8481bd35863debfc113e19381c2d9fb4: data
./7c0dcde7e13dbc350eb8fc45100edct526633be2: data
./ef7c1a5991f95ed3c61F6F88bc0d03cd2a0f2d32: data
./10b512c811Fal73d2dcfb7796d5b312e2e91d629: data
./bfcc02219321d1047cc0330454a61f6b276d06f6: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./c155efdb8e846076Fc7ecc44006556F0974bcace: DOS executable (COM)
./0cc6215d31e5e639a19b4ceb3d57ce64d62e9b2c: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./9b259bc255Fef873F1e41629fb67c30f0c40e5dc: PE32 executable for MS
Windows (GUI) Intel 80386 32-bit
./22bdeccfcOfb59acefa2140992e12d0d6f5defc2: data
./cd195e5943b68637b57eac9a916cc742b2599e89: data
./eab52fcdfcff2f7d875a0fd6b41F7842cde93ebb: data
./d618c968854e9ca3d336e03cd3221c25be8cd5d: data
./8b591e9324afb0c641b4c0e68c0cOe7ae9ddc2fb: data

Some of them are HTML, though none appear to have any unusual or suspect traits.

Page 42 of 42



